WHAT IS A DEEP CYCLE BATTERY?
Deep Cycle Batteries are the key component in various types of renewable energy systems that require the storage of electricity. A battery is essentially a storage vessel for electricity. It is a critical component heavily relied upon by the system as a whole. A battery bank can provide a relatively constant source of power when the grid is down, or during periods when your photovoltaic system is not producing power. Although batteries are not one hundred percent efficient, they are predictable and stable enough for reliable long-term service.
THINK OF YOUR BATTERIES LIKE A BUCKET OF ENERGY
Batteries are basically the only method to store direct current (DC) power produced from sources like solar panels, wind generators, micro-hydro or generators. Think of your batteries like a bucket of energy, where the voltage is equal to pressure, and amperage equates to flow rate. Imagine that we are slowly pouring water into a bucket that has a small hole on the bottom. As we pour the water into the bucket, its slow leak will mean that you'll probably use 12 gallons of water to fill a 10 gallon bucket by the time it is full. In the same way, it takes more energy to charge a battery than it will actually store. The size of your bucket is analogous to the amp hour capacity of the battery bank. Amp hour is the unit of measurement used to express the storage capacity of deep cycle batteries. The Amp hour rating, written as Ah, will tell you how much amperage is available when discharged evenly over a 20-hour period. Twenty hours has been the standard time length for rating batteries, although shorter or longer time variables may be used depending on the application.
BATTERY COMPONENTS
Battery technology has not changed much in the last 100 years. The standard construction method involves flooding lead plates in sulfuric acid. The chemical reaction between the positively charged lead plate and the negatively charged acid allows the battery to store and "give" electricity. The thickness of the lead plate is closely related to the lifespan of the battery because of a factor called "Positive Grid Corrosion". The positive lead plate gradually wears away over time. Thicker plates are used in deep cycle batteries. This usually translates to a longer battery life. Although plate thickness is not the only factor related to longer lifespan, it is the most critical variable. Battery Bank with Offgrid System
BATTERY LIFESPAN
Most of the loss incurred in charging and discharging batteries is due to internal resistance, which is eventually wasted as heat. Efficiency ratios are relatively high considering that most lead acid batteries are 85 to 95 percent efficient at storing the energy they receive. Deep cycle batteries used in renewable energy applications are designed to provide many years of reliable performance with proper care and maintenance. Proper maintenance and usage play a major role in battery lifespan. Toiling over your battery bank daily with complex gadgets and a gallon of distilled water, however, is not necessary. The most common causes of premature battery failure include loss of electrolyte due to heat or overcharging, undercharging, excessive vibration, freezing or extremely high temperatures, and using tap water among other factors. Charging 101There are three basic stages in charging a battery: Bulk, Absorption, and Float. These terms signify different voltage and current variables involved in each stage of charging.
Deep Cycle Batteries are the key component in various types of renewable energy systems that require the storage of electricity. A battery is essentially a storage vessel for electricity. It is a critical component heavily relied upon by the system as a whole. A battery bank can provide a relatively constant source of power when the grid is down, or during periods when your photovoltaic system is not producing power. Although batteries are not one hundred percent efficient, they are predictable and stable enough for reliable long-term service.
THINK OF YOUR BATTERIES LIKE A BUCKET OF ENERGY
Batteries are basically the only method to store direct current (DC) power produced from sources like solar panels, wind generators, micro-hydro or generators. Think of your batteries like a bucket of energy, where the voltage is equal to pressure, and amperage equates to flow rate. Imagine that we are slowly pouring water into a bucket that has a small hole on the bottom. As we pour the water into the bucket, its slow leak will mean that you'll probably use 12 gallons of water to fill a 10 gallon bucket by the time it is full. In the same way, it takes more energy to charge a battery than it will actually store. The size of your bucket is analogous to the amp hour capacity of the battery bank. Amp hour is the unit of measurement used to express the storage capacity of deep cycle batteries. The Amp hour rating, written as Ah, will tell you how much amperage is available when discharged evenly over a 20-hour period. Twenty hours has been the standard time length for rating batteries, although shorter or longer time variables may be used depending on the application.
BATTERY COMPONENTS
Battery technology has not changed much in the last 100 years. The standard construction method involves flooding lead plates in sulfuric acid. The chemical reaction between the positively charged lead plate and the negatively charged acid allows the battery to store and "give" electricity. The thickness of the lead plate is closely related to the lifespan of the battery because of a factor called "Positive Grid Corrosion". The positive lead plate gradually wears away over time. Thicker plates are used in deep cycle batteries. This usually translates to a longer battery life. Although plate thickness is not the only factor related to longer lifespan, it is the most critical variable. Battery Bank with Offgrid System
BATTERY LIFESPAN
Most of the loss incurred in charging and discharging batteries is due to internal resistance, which is eventually wasted as heat. Efficiency ratios are relatively high considering that most lead acid batteries are 85 to 95 percent efficient at storing the energy they receive. Deep cycle batteries used in renewable energy applications are designed to provide many years of reliable performance with proper care and maintenance. Proper maintenance and usage play a major role in battery lifespan. Toiling over your battery bank daily with complex gadgets and a gallon of distilled water, however, is not necessary. The most common causes of premature battery failure include loss of electrolyte due to heat or overcharging, undercharging, excessive vibration, freezing or extremely high temperatures, and using tap water among other factors. Charging 101There are three basic stages in charging a battery: Bulk, Absorption, and Float. These terms signify different voltage and current variables involved in each stage of charging.
0 comments:
Post a Comment